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ABSTRACT

This paper deals with the problem of selecting fair multinomial populations compared

with a standard. Two selection procedures are investigated: the natural selection proce-

dure of Gupta and Leu (1989) and an empirical Bayes simultaneous selection procedure. It

is proved that the natural selection procedure is a Bayes procedure relative to a symmetric

Dirichlet prior distribution, and therefore is an admissible selection procedure. For the

empirical Bayes simultaneous selection procedure, the associated asymptotic optimality is

investigated. It is shown that the proposed empirical Bayes selection procedure is asymp-

totically optimal relative to a class of symmetric Dirichlet priors. The rate of convergence

of the empirical Bayes selection procedure is shown to be of order O(exp(-k + In k)) for

some positive constant r, where k is the number of populations involved in the selection

problem.
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1. INTRODUCTION

-'The concept of diversity within a population is of considerable importance in statistical

theory and applications. The problem of measuring diversity arises in ' variety of studies

in ecology, sociology, econometrics, genetics and many other sciences./For a multinomial

population with m cells, the index of diversity is a function of the corresponding probability

parameter vector p = (Pi,... ,Pm). In practice, a Schur-convex or Schur-concave function

of p may be appropriate. There are two measures of diversity of a multinomial population

which have been commonly used. These are the Shannon's entropy function and the Gini-

Simpson index. The notion of the entropy function was introduced by Shannon (1948).

The Gini-Simpson index was introduced by Gini (1912) and Simpson (1949). Both are

Schur-concave function of p.

In the literature, selection procedures using indices of diversity as selection criteria

have been studied by many authors. Gupta and Huang (1976) studied the problem of se-

lecting the population with the largest entropy function for binomial distributions. Gupta

and Wong (1975) considered the problem of selecting a subset containing the population

with the largest ntropy for multinonial distributions. Dudewicz and Van der Meulen

(1981) investigated a selection procedure based on a generalized entropy function. Alam,

Mitra, Rizvi and Saxena (1986) studied selection procedures based on the Shannon's en-

tropy function and the Gini-Simpson index using the indifference zone approach. Rizvi,

Alam and Saxena (1987) also considered a subset selection procedure based on certain

other diversity indexes. Recently, Gupta and Leu (1989) have studied certain selection

procedures based on the Gini-Simpson index.

In this paper, we are dealing with the problem of selecting fair populations compared

with a standard level. Consider k independent multinomial populations 71.... ,lrk. For

each i = 1,... , k, population ri has m "',. and is characterized by the corresponding

probability parameter vector p, = (Pil,.. ,m), where 0 < pij _ 1, j = 1,... ,7, and
m

~pi) = 1 for eachi = 1,...,k. Define
j=1

m 1

O, = %I(p) - i - 1)2. (1.1)

We use 0j as a measure of diversity (or uniformity) of population 7ri. Note that since
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m
0i E , it is essentially equivalent to the Gini-Simpson index. Also note that

j=i

0 <, 1 1 For a given constant 00, 0< o0 <1 - -, population iri is said to be a

fair population if O, _< 0 and a bad population, otherwise. Our goal is to derive statistical

selection procedures for selecting all fair populations while excluding all bad populations.

It should be noted that the problem of selecting fair multinomial populations has been

considered by Gupta and Leu (1989) through a classical approach.

Let Q = {_p = (Pl'-P)-p-- = (Poi,...,P<),_ Pij _ 1, 1,...,m, Z pij = 1 for

each i = 1,... ,k} be the parameter space and let A = {sls C {1,... ,k}} be the action

space. When action s is taken, it means that population iri is selected as a fair population

if i E s and excluded as a bad population if i V s. For p E Q and action s E A, the loss

function L(p, s) is defined to be:

L(p,s) = Z(o0 - 9o)Io1 I() +ZJ> o 01(9. (1.2)
iEs ies

In (1.2), the first summation is the loss due to selecting certain bad populations and the

second summation is the loss due to not selecting certain fair populations.

The content of this paper consists of two parts. In Section 2, we investigate some op-

timal properties of the natural selection procedure of Gupta and Leu (1989). It is shown

that, for the loss function L(p, s) of (1.2), the natural selection procedure is Bayes relative

to some symmetric Dirichlet prior, and therefore, it is admissible. Section 3 deals with this

selection problem through a parametric empirical Bayes approach. An empirical Bayes

selection procedure is proposed and the corresponding asymptotic optimality is investi-

gated. It is shown that the proposed empirical Bayes selection procedure is asymptotically

optimal relative to a class of symmetric Dirichlet priors. The rate of convergence of the

proposed empirical Bayes selection procedure is also established, and shown to be of order

O(exp(-rk + Ink)) for some positive constant r, where k is the number of populations

involved in the selection problem.

2. OPTIMALITY OF NATURAL SELECTION PROCEDURE

For each i = I,..., k, let Xi = (Xil,... , Xim) be the random observation associated

with population 7ri, where Xij, 1 < j < m, are nonnegative integer random variables such
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that 0 < Xij < N and E Xjj = N. Then, X has the probability function
j=1

N(! jp,= i-N

(_Xi =.d ii-I (2.1)
I (Xij!) j='

j=1

at point xi = (xi,... ,xim) for which 0 < xj N, 1 < m and E x,j = N. Let Xi be
j=l

the sample space generated by --. Let X -(X 1,... Xk) and denote the corresponding

observed value by Z = (,... ,xk). Also, let X = A', x ... x Xk denome the sample space

of X.

A selection procedure d = (dl,...,dk) is defined to be a mapping from the sam-

ple space X into the product space [0,11k. That is, for each x = (E,. e X.,

d(_) = (d,(z),... , dk(z=)), where d,(_) is the probability of selecting population 7ri as a fair

population given X = x is observed. We let D denote the class of all selection procedures

defined in the above way.

For each i =1,...,k, (-L,..., -) is the maximum likelihood estimator of p. =

(Pil,... ,Pim). From (1.1), it is natural and reasonable to estimate Oi by 9i = ( N ) -m
j=1

Gupta and Leu (1989) proposed a natural selection procedure dN = (dr,... , dk) based on

j, i = 1,..., k, which is equivalent to the following: For each i = 1,..., k,

d$v(X)= 1 if9,<6, (2.2)t-- 0 otherwise,

where 6 is a prespecified positive constant such that 0 < 6 < 1 - -. Since this natural

selection procedure is heavily dependent on the constant b, we denote this procedure by

dN(6) =-dN6,..dNb

In the following, it is assumed that for each i = 1,... , k, the parameter vector

P, = (pi,... ,pm) is a realization of the random vector P, = (P 1 ,.. . ,Pm). It is also

assumed that P1,..., P are iid with a common prior distribution G., belonging to a class

of symmetric Dirichlet distributions C, where

=gg() r(mlIp-, 0 < p, < 1, j = 1,... ,m, P= 1. (2.3)
d = ggP) [r(aj)]-' =I PZ 0<P=,! =""M

1 j= 1

4



For a prior distribution Ga E C and a selection procedure d = (dl,... ,dk) E D, we

denote the corresponding Bayes risk by r(G, d). From (1.2) and the statistical model

described previously,
k

r(a., di) = ri (G.,,di) (2.4)

where

k

± (Gf (di- d) I)[( [p.)gI(pi)]dp, (2.5)

LEX =o) j= =-

r~\( dN! r(mno) ,=t0 H f fj If ,)9 ,(ijdg. -p)r] ,!) (2m+)

j =1
and Q,(O0) = {p = (P1 ,"" ,Pk) E Q 10i _ go}.

Since the second term of (2.5) does not depend on the selection procedure d, a Bayes

selection procedure d'- = (dG,..., dk) can be obtained as follows: For each i = 1,..., k,{ -
di,(_ G _ 1 if E E[P ijz] - -L < Oo,

_ j=a1 ['I M (2.6)

0 otherwise.
Then, we have the following theorem.

Theorem 2.1. For each positive constant 6 such that 0 < 6 < 1 - L and m6N 2 +mN-N >

00, for the loss function L(p, s), the natural selection procedure dN(6 ) given in (2.2) is a

Bayes procedure relative to some symmetric prior distribution G,.

Proof: First, straightforward computation yields that for each i = 1,...,k and j =

1,... ra,
E[P (Xe, + a + 1)(X,, + a)

E[PIl_] = (ma + N + 1)(ma + N)

and therefore
m

1(m 2 - m)a + mN + m 1 xij - N 2 - N
1:-_= E[PIli]_1 ==1 (2.7)m=1 IJ = m(ma + N + 1)(ma + N)
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Note that
9i < 5 6=€ E E[Pj'j_, ] _ -_ _ H(a)

m
j=1

where
(b + +-)mnN2 + (m 2 -m)a+mN-N 2 - N

H(a) Mm(ma + N + 1)(ma + N)

Thus, it suffices to prove that for given 0, 0 < Oo < 1 - -L, there exists a positive

a such that H(a) = 80. Since H(a) is decreasing in a, H(O) -- m6N 2 +mN-N >0 bymN(N+1)

the assumption, lim H(a) = 0 < 0o and H(a) is a continuous function of a on [0. C),

there exists a unique a = a(Oo) > 0 such that H(a) = 00. This implies that the natural

selection procedure dN(6 ) is the Bayes procedure relative to the symmetric Dirichlet prior

distribution Go(go). Hence the proof of this theorem is complete. El

The following corollary is a direct consequent of Theorem 2.1.

Corollary 2.1. For each positive constant 6 such that 0 < 6 < 1- L m6N 2+mN-N > 0

the natural selection procedure is admissible for the loss function L(p, s).

3. AN EMPIRICAL BAYES SELECTION PROCEDURE

We assume that the hyperparameter a of the symmetric Dirichlet prior distribution

G, is unknown. In this situation, it is not possible to apply the Bayes selection procedure

d'- for the selection problem at hand. Thus, the empirical Bayes approach is employed

here.
m

For each i = 1,..., k, let 'W, - X ?, and let wi denote the observed value of Wi.
j--1

Under the preceding statistical model, W1,...,Wk are iid random variables such that
N < Wi < N 2 . It follows from straightforward computations that

12 = E[Wi] = N[1 + (N1)(a1), (3.1)
ma+1

and therefore,
N2 -/N .2 1 (3.2)

M2 - N(m + N - 1)'

6



From (3.2) and (2.7), for each i= 1,...,

E[Pi' Jj -
j=1

= {(M 2 - m)(N 2 - P2) + [M1 - N(m + N - 1)][mN + mwi - N 2 - N]}

X (M 2 - ?nN - N2 + N)/[m(N - )(M - N 2 )N(MP 2 - N 2 - M + 1)J

= Q,(121w,), (3.3)
m

where wi = E x.
j=1

Note that for wi(or xi) being kept fixed, Qi(P21wui) is increasing in U2.

k
Define, A2 = k ' Vi. We will use/A2 to estimate/2 and use Qi(i 2dWi) to estimate

i=1

Q,(I.21w,). However, by the definition of /2 (see (3.1)), N + N(N-1) < Y'2 < N 2 and

Q i (P21wi) tends to zero as /2 tends to N + ) Also, it is possible that 12 N +
m,VN Thus we define

Qi(2lwi) if P2 > N N(N-1)
= 0 otherwise.

We now propose an empirical Bayes selection procedure d* = (d ,... , d ,) as follows:

For each 1,... ,k,
,r 1 if ,0(wi) 00,

- [ {0 otherwise.

In the following, we will investigate the asymptotic performance of the empirical Bayes

selection procedure d* for the case where k, the number of populations involved in the

selection problem under study, is sufficiently large.

Since dGo = (dGo',.., dGo) is the Bayes selection procedure, for the empirical Bayes

selection procedure d* = (dr,...,d ,), ri(Ga,d) - ri(G,,,d 9
G) > 0 for each i = 1,... k

k

and therefore, r(G,,d*) - r(G,,dGo) = Z[ri(G,,d,) - ri(G,d )] > 0. This nonnega-

tive regret value r(G, d*) - r(G2 , dG G) will be used as a measure of performance of the

empirical Bayes selection procedure d*.

Definition 3.1. A selection procedure d = (dl,... ,dk) E D is said to be asymptotically

optimal of order {13k} relative to the prior distribution G if

r(G,d*) - r(G,dG) = O(Ok)
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where {/3k} is a sequence of positive numbers such that lim 13k = 0.

k -oo

For each i = 1,..., k and for the fixed ,2, Qi(PO2 w), which is defined in (3.3), can be

viewed as a function of wi. It is clear that Qi(P2 Iwi) is increasing in wi. Let

m
A, = {w 1w, = w,(x) = E xj z, Ex X, Qi( 2IwI) < O0}

j=1
m

B, = w, 1wi =--ji xii, x~i E X,, Q,(P2 lW,) > 00 1
j=1

From the statistical model under consideration, Qi(P2 Iw) = Qj0 2 w) = Q(,12 Iw) (say) for

all i,j = 1. k. Thus, A1 = ... = Ak = A and Bl = ... =Bk = B (say).

Let h(w) denote the common marginal probability function of the iid random variables
m

TV' = , i = 1,... , k. From (2.5)-(2.6) and (3.5), straightforward computation yields
j=1

that

0 (GQ, d) - r(GdG o )

- Z Pj{p*(wi) > 0oTW, = wi}h(wi) (3.6)
wiEA

+ E Pi{*(wi) < 0oW = wi}h(wi)
wiEB

where the probability measure Pi is computed with respect to (W 1,..., Wi- 1 , Wi+1,.

S1"k).

Thus, it suffices to investigate the asymptotic behavior of Pj{V*(w,) < Oo1W, = wi}

for wi E B and Pj{pV(w,) > OoIWi = wi} for wi E A.

Lemma 3.1. For each c > 0 and for sufficiently large k,

(a) Pi{/ 2 - P2 < -cW = wi} _ O(exp(-kc2N- 4(1 -L)-2/2)).

(b) Pi{/ 2 - P2 > cjW = wi} <_ O(exp(-kc2N- 4 (1 - )-2 /2)).

(c) Pi{f2 < N+ N(S-1 IW = wi} !5 O(exp(-k(I 2-N-(N-1)N/m) 2 N- 4(1-L)-2/2)).

Note that the above upper bounds are independent of the value w,.
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k

Proof: (a). Let A 2 (i) = ki VVj. Then,

s

j=1I]

kc+ "2-w' < Hence, we obtain, for k sufficiently large, that
-c k- - w2

Pi (A2 - 2-C iWI

P,{/22~ - ~2 -2<-l,=w}=P{/2(i) -'I -1 + k-1 }

2

< exp{-kc2N-4 (l - 1 )-2 /21,
m

where the last inequality follows from Theorem 2 of Hoeffding (1963). Note that the upper

bound is independent of wi.

The proof of part (b) is similar to that of part (a). By letting C = - [N + N(N-I1i

then c > 0. Thus, the result of part (c) follows directly from part (a).

Lemma 3.2. For wi E A,

Pif{o*(wi) > 91W, = wil O(exp(-k(Q1-(Oojw,) - P 2 )2} N(1 -
m

where Q sw) is the inverse function of Q 2 (. I .).

Proof. From (3.4) and the fact tiat Oo > 0,

PP*(W2 ) > 9OIWi = Wi} = P{Qi(A2 liw) > 00JW~i = W. (3.7)

Now, for each fixed W E A, Qpatlw() is strictly increasing in p for N + N(N-1) < ]

N' and Qit12Iwi) < Oo. Thus 12 <Q O(0((wo). Then,

Qro2 I) > 00 A2 ta > Q'(BOjWi)

'=A 2, - P2 > QT'(8ow,) - P2 > 0. (3.8)
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Combining (3.7) and (3.8), by Lemma 3.1 (b), we obtain, for w, E A,

Pf{p*(w,) > 9oIW, = W

= P,2 - t12 > Qi1(oIwO) - 2 W, = w,}

< O(exp(-k(Qi'(olw,) - 2)2N-'(1 1)-2/2)).

Thus, the proof of this lemma is complete.

Lemma 3.3. For wi E B,

Pif{4;*(u) < 9oIV = wi} < O(exp(-k(Q~i(Oojwj) - P2 ) 2N- 4 (1 - 1)-2/2))

+ O(exp(-k(1 2 - N - (.N - 1)N/m) 2 N -4 (1 -

Proof:

P{eP(w,) _< 0o1W, = w,}

=Pi{f Oi(Wi) :5 60, A2 !5 N + N(W - =1wiX =3.9)

m
+ P fV*wi : O, 2 > N+ N(N-1

From Lemma 3.1 (c),

~ 6 , 4'z<N ±N(N - 1) =w}Pj (p*(wj) <_ 8c, A,2 :,> N + jWj = w,}

< O(exp(-k(P2 - N - (N - 1)N/m)2 N- 4 (1 - M )-2/2)). (3.10)

From (3.4) and an argument analogous to that given in the proof of Lemma 3.2, we

have

P,{(w( ) < G0, P2 > N + m W -w

=P,{Qi(A2 tw,) 9o, 2 > N N(N-)W = w}
m

:5 Pi{f 2 -,U2 :5 Q '(00olwO - P IW, = wi} (3.11)

O(exp(-k(Q '(OoIwi) - P 2) 2N -(1 _ _)-2/2))
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where Q71 (Oolw) - 112 < 0 since wi E B. Thus, the lemma follows from (3.9)-(3.11) El
Let r1  min{(QT1 (OoIwi) - Y2)2N-4(1 _ ±)-2/21wi E Ai U Bi}. Then, r1 > 0

since Q7l(OoIUi) - /12 # 0 for all wi E Ai U Bi and Ai U Bi is a finite set. Then r 

min(Ti, (P2 - N - (N - 1)N/m) 2 N-4(1 - L -2/2)) > 0.

The following theorem describes the asymptotic optimality property of the empirical

Bayes selection procedure d* = (d ,... , d*).

Theorem 3.1. Let d* = (d*,..., d) be the empirical Bayes selection procedure defined

through (3.4)-(3.5). Suppose that the prior distribution is a member of the class C of

symmetric Dirichlet distributions given in (2.3). Then

(a) For each i = 1,..., k, ri(GQ, d) - ri(Ga, d G) <_ O(exp(-rk)), and

(b) r(G ,,d*) - r(G ,d G- ) _< O(exp(-rk + In k)))

where 7 is the positive constant defined previously.

Proof: Part (b) is a direct result of part (a). Thus, we need to prove part (a) only. From

(3.6) Lemmas 3.2 and 3.3,

r(G.,d)- r( , d

< O(exp(-7k)) E_ h(wi)

wiEAUB

- O(exp(-rk)).

Thus, the theorem follows. D
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